
Fuel PW Modifier calculations for the ’89 T1 SMEC:

This routine calculates all of the fuel pulsewidth modifiers (Coolant Temp, Charge Temp,
Pumping Efficiency, O2 Sensor, Adaptive memory, etc.).

Just a draft, still need to comment a few things…

Jump to – AB33

Engine
Running?

YES

NO

Increment X

Cool Temp
> 161ºF?

YES

NO

$82B0

Use $82B1 if Coolant is >161ºF
Use $82B2 if Coolant is < 161ºF

Reg 73 just
set to FF?

NO

YES

O2 Signal is
good?

NO

YES

$82B1

Time Eng
Running >

$80 (384s)?

YES

NO

Time Eng
Running >

$40 (192s)?

NO

YES

Time Eng
Running >
Constant?

$82B1
$82B2

NO

YES
A

The basic purpose of these first 2 pages is
to determine the value that will be used
to scale the A and C Fuel Enrichment
tables for phase-out. These tables are
phased out with time and increasing
Coolant Temp. B is not phased out.

Jump to – AB33

Jump to – AB24

Jump to – AB1E

Jump to – AB1E

$0050, bit1

Load Countdown
with FFh

$0073

Use $82B3 if AB1E was called
Use $82B6 if AB24 was called

Time Eng
Running >
Constant?

$82B5

YES

NO

AB1E

Set Reg_51, Bit 1

AB24

Loop Count
=

00011111?

$0080

NO

YES Load Countdown
Var into B

$0073

Subract Constant
at X from B

Set X to $82B3

Was
Countdown

> X ?

$0080

NO

YES

Store B in
Countdown

$0073

Clear B

Jump to – AB33

Jump to – AB33

A

Jump to – AB33

AB33

Clear TempVar0

WOT?

NO

YES

Don’t do
closed loop

stuff?

NO

YES

$004F, Bit1

$004F, Bit2

Fudged Coolant
Temp into A

Countdown
($73) just
set to FF?

NO

YES

Lookup value from
FuelEnrichmentA

$8248

Countdown
($73) just
set to FF?

NO

YES

Scale
FuelEnrichmentA by

Countdown

Add Add Result to
TempVar0

$0050, bit 1

Lookup value from
FuelEnrichmentC

$8286

Scale
FuelEnrichmentC by

Countdown

Store Result to
TempVar0 Store Result to

TempVar0

Jump to – AB69

Jump to – AB69

This page is the lookup and scaling of
FuelEnrichmentA and C

$0050, bit1

AB69

Lookup value from
FuelEnrichmentB

$8263

WOT?

NO

YES

$004F, Bit1

Store Lookup in
TempVar1

Lookup value for
RPM Compensation

$8290

Lookup =
0?

NO

YES

Square the result
and store in B

Add TempVar0 to B

Clear A

Multiply the result
by 2 and store in

TempVar0

B

This page is the lookup of FuelEnrichmentB

WOT?

NO

YES

Don’t do
closed loop

stuff?

NO

YES

$004F, Bit1

$004F, Bit2

Jump to – ABC1

B

Throttle
Pressed?

NO

YES

$004F, Bit7

This page is the lookup of the ColdLoad ,
No- and PartThrottle Factors from MAP and
Coolant Temp.

Lookup ColdLoad
from Coolant Temp

$82B7

Lookup ColdLoad
from Coolant Temp

$82E1

Store the result in
TempVar4

Throttle
Pressed?

NO

YES

$004F, Bit7

Lookup ColdLoad
from MAP

$82CA

Lookup ColdLoad
from MAP

$82F4

Multiply the result
by TempVar4

C

C This page is the lookup of the Baro and Charge
Temperature Compensation as well as the enrichment
and leaning due to MAP and Throttle change (not the
same as the AccelPump function, but related)

ABC1

Multiply the result
by 10

Add result to
TempVar0

Lookup Baro
Compensation

$830B

Lookup =
0?

NO

YES

Scale TempVar0 by
Result (in D), then
and TempVar0 to D

Load D with
TempVar0

Add 1 to D

Store D in
TempVar0

Multiply D by 4

Store B in
BaseFuelModifier

$00D9

Lookup Charge
Temp Sensor
Compensation

$8349

Scale TempVar0 By
result and add to

TempVar0

D

FuelEnrichN
oThrotVar

= 0?

NO

YES

$0091

Scale TempVar0 By
FuelEnrichNoThrotVar

FuelLeaning
ThrtDecVar

= 0?

$0079

Scale TempVar0 By
FuelEnrichNoThrotVar

NO

YES

FuelLeaning
MAPDecVar

= 0?

$0078

Scale TempVar0 By
FuelEnrichNoThrotVar

NO

YES

The routine that performs this scaling
($C44D) uses the value in A to determine
which type of scaling to use. If A = 1,
then X = X * Scale. If A = 0, then X = X
+ X * Scale. In this case, A is forced to
be 1 before the routine is called.

See
arrow
below

D
This page is incorporates the adaptive memory value
compensation.

Clear A

WOT?

NO

YES

IncreaseFu
elMixVar =

0?

YES

NO

$004F, Bit1

$0077

Adaptive
Value

negative?

YES

NO

$008B

Adaptive
Value

positive?

NO

YES

$008B

Increment A

Divide
AdaptMemValue by

2

Clear A

Scale TempVar0 by
Result

Bit 7 set?

YES

NO

$00B1

Add Const $8833 to
OxSensFeedbackCt,

Store in B

$007D

Result <
FF?

YES

NO

Load B with #$7F

Jump to – AC3D

Jump to – AC3D

Jump to – AC3D

The routine that performs this scaling
($C44D) uses the value in A to
determine which type of scaling to use
based on the sign of the scale. If A =
1, then X = X * Scale. If A = 0, then X
= X + X * Scale.

AC3D

This page is incorporates the oxygen sensor trim and
PumpingEff, and then stores the final result.

Is B
Negative?

NO

YES

$00B1

Increment A

Divide B by 2

Scale TempVar0 by
result

Lookup PumpingEff

$8322

PumpEff =
0?

YES

NO

Store TempVar0 as
SumOfFuelModifiers

Store result as
SumOfFuelModifiers

Scale TempVar0 by
PumpEff

Return to main
loop.

The routine that performs this scaling
($C44D) uses the value in A to determine
which type of scaling to use based on the
sign of the scale. If A = 1, then X = X *
Scale. If A = 0, then X = X + X * Scale.

